

Operations with Decimals

Subtraction: 4 - 0.3

• 3 tenths subtracted from 4 wholes. One of the wholes must be divided into tenths.

	ł
	ł

• The solution is 3 and $^{7}/_{10}$ or 3.7.

Addition: A recipe for a cake requires 1.25 cups of milk, 0.40 cups of oil, and 0.75 cups of water. How much liquid is in the mixing bowl?

• I saw that the 0.25 in the 1.25 cups of milk and the 0.75 cups of water would combine to equal 1 whole cup. That plus the 1 whole in the 1.25 cups of milk gives me 2 whole cups. Then I added the 2 wholes and the 0.40 cups of oil to get 2.40 cups.

Multiplication: A gumball costs \$0.22. How much do 5 gumballs cost? Estimate the total, and then calculate. Was your estimate close?

						\square	\square
				_		\square	\square
				_		\vdash	\square
	-		-=			 	
	_			-		\vdash	\vdash
222 221		10233			1300 1122		

I estimate that the total cost will be a little more than a dollar. I know that 5 20's equal 100 and we have 5 22's. I have 10 whole columns shaded and 10 individual boxes shaded. The 10 columns equal 1 whole. The 10 individual boxes equal 10 hundredths or 1 tenth. My answer is \$1.10. My estimate was a little more than a dollar, and my answer was \$1.10. I was really close.

Division: Joe has 1.6 meters of rope. He has to cut pieces of rope that are 0.2 meters long. How many can he cut? *8 pieces*

 $\begin{array}{c} \underline{\textbf{Geometry 15\%}}\\ \textbf{ordered pair}\\ \hline (2, 3)\\ \hline \rightarrow \uparrow \end{array} \begin{array}{c} (b, 2)\\ \hline \rightarrow \uparrow \end{array}$

Using the coordinate grid, which ordered pair represents the location of the school? (7, 4)

- quadrilateral a four-sided polygon.
- **parallelogram** a quadrilateral with two pairs of parallel and congruent sides.
- rectangle a quadrilateral with two pairs of congruent, parallel sides and four right angles
- **rhombus** a parallelogram with all four sides equal in length
- square a parallelogram with four congruent sides and four right angles.

Hierarchy Diagram Quadrilateral Parallelogram Rectangle Square

Measurement & Data 20%

Finding the Volume of Composite Figures

Figure 1: 3 x 1 x 1 = 3 cm³ Figure 2: 2 x 1 x 1 = 2 cm³ Total Volume: 3 cm³ + 2 cm³ = 5 cm³

<u>Numbers & Operations-Fractions</u> <u>30%</u>

If Mary ran $3^{1}/_{6}$ miles every week for 4 weeks, she would reach her goal for the month. The first day of the first week she ran $1^{3}/_{4}$ miles. How many miles does she still need to run the first week?

This model shows $1^{3}/_{4}$ subtracted from $3^{1}/_{6}$ leaving $1 + \frac{1}{4} + \frac{1}{6}$ which you can then change to $1 + \frac{3}{12} + \frac{2}{12} = 1^{5}/_{12}$.

Estimating Sums and Differences

Your teacher gave you 1/7 of the bag of candy. She also gave your friend 1/3 of the bag of candy. If you and your friend combined your candy, what fraction of the bag would you have? Estimate your answer.

 $\frac{1}{7}$ is close to $\frac{1}{6}$ but less than $\frac{1}{6}$. $\frac{1}{3}$ is equivalent to $\frac{2}{6}$. So $\frac{1}{7} + \frac{1}{3}$ is a little less than $\frac{3}{6}$ or $\frac{1}{2}$.

Jerry was making two different types of cookies. One recipe needed ${}^{3}/_{4}$ cup of sugar and the other needed ${}^{2}/_{3}$ cup of sugar. How much sugar did he need to make both recipes?

Multiplication of Fractions

Three-fourths of the class is boys. Two-thirds of the boys are wearing tennis shoes. What fraction of the class are boys wearing tennis shoes? $\frac{1}{2}$ of the class

Multiplication as Scaling

 $2^2/_3 \times 8$ must be more than 8 because 2 groups of 8 is 16 and $2^2/_3$ is almost 3 groups of 8. So the answer must be close to, but less than 24.

 $\frac{2}{4}$ is less than 7 because 7 is multiplied by a factor less than 1 so the product must be less than

¾x7

Multiplication of Mixed Numbers

Mary and Joe determined that the dimensions of their school flag needed to be $1^{1}/_{3}$ ft. by $2^{1}/_{4}$ ft. What will be the area of the school flag?

- First, I am going to multiply $2^{1}/_{4}$ by 1 and then by $1/_{3}$.
- When I multiply $2^{1}/_{4}$ by 1, it equals $2^{1}/_{4}$.
- Now I have to multiply $2^{1/4}$ by $^{1/3}$.
- $1/_3$ times 2 is $2/_3$.
- $1/_3$ times $1/_4$ is $1/_{12}$.
- So the answer is $2^{1}/_{4} + 2^{2}/_{3} + 1^{2}/_{12}$ or $2^{3}/_{12} + 8^{3}/_{12} + 1^{2}/_{12} = 2^{12}/_{12} = 3$

Division of Fractions

Four students sitting at a table were given 1/3 of a pan of brownies to share. How much of a pan will each student get if they share the pan of brownies

equally? $\frac{1}{12}$ of the pan

The bowl holds 5 Liters of water. If we use a scoop that holds $1/_6$ of a Liter, how many scoops will we need in order to fill the entire bowl?

I created 5 boxes. Each box represents 1 Liter of water. I then divided each box into sixths to represent the size of the scoop. My answer is the number of small boxes, which is 30. That makes sense since $6 \times 5 = 30$